frasesdemoda.com | Update Everything

find the value of sin2a, if tana=-12/5 in the fourth quadrant

  • LammettHash: [tex]\tan a=-\dfrac{12}5[/tex]

    Recall the following identities:

    [tex]1+\tan^2a=\sec^2a=\dfrac1{\cos^2a}[/tex]
    [tex]\cos^2a=\dfrac{1+\cos2a}a[/tex]

    from which we get

    [tex]1+\left(-\dfrac{12}5\right)^2=\dfrac1{\cos^2a}[/tex]
    [tex]\implies\cos^2a=\dfrac{25}{169}[/tex]

    Since [tex]a[/tex] is in the fourth quadrant [tex]\left(\dfrac{3\pi}2<a<2\pi\right)[/tex] we know that [tex]\cos a[/tex] should be positive, so when we take the square root here, we should take the positive root.

    [tex]\implies\cos a=\sqrt{\dfrac{25}{169}}=\dfrac5{13}[/tex]

    Now recall that

    [tex]\cos^2a+\sin^2a=1[/tex]

    and since [tex]a[/tex] is in the fourth quadrant, we expect [tex]\sin a[/tex] to be negative. So,

    [tex]\sin^2a=1-\cos^2a=\dfrac{144}{169}\implies\sin a=-\sqrt{\dfrac{144}{169}}=-\dfrac{12}{13}[/tex]

    One final identity:

    [tex]\sin2a=2\sin a\cos a[/tex]

    from which we get

    [tex]\sin2a=2\cdot\left(-\dfrac{12}{13}\right)\cdot\dfrac5{13}=-\dfrac{120}{169}[/tex]

3cota=4 find value of cos2a−sin2a filo if 3 tana=1 the sin2a−cos2a 12 22cosa−3sina=20sina then tan2a sin2a⋅sec2a 1 cosa=3/5 9 9tan2a 2 sina sin2a=1 c sin2a when 4 sin 2n maths cos2a = 1/2 sin4a cos4a sina=1/10 of(i) (ii) 3sina 2cosata 9tan2a2 tana tanb tanc/sin2a sin2b sin2c example sina=53 where 0∘ sin2a=2sina a section consists c) prove that 1−cos2a sin2a1 =cota3 a) si solved: and 5 7 13 (1 7:06 15g double angle formulas cos2θ 25 sinθ=cosθ thenif kik sin3a=1 cos6a−4cos∘a 8cos2aa −1−sin2a 1−sin2a ∣tana∣ q 24 tan2d−cos2a−sin2a ans acute angles sol trigonometric functions1 when(1) cosα=53 (2) cosa 2tan2a is is? edurev class 10 sina=4/5 lies in 2nd quadrant solved 3/5 quadrants iii course hero given sina=5−3 with qiv b) chegg com